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中文摘要 

在過往研究中，數值模擬的實驗說明了海洋大陸森林砍伐會造成降水量的顯

著變化。然而，森林砍伐的氣候反應與其氣候平均態之間的關聯性仍不清楚。本研

究旨在分析在大氣模式比較計畫 (AMIP) 類型的實驗以及海-陸-氣耦合氣候模

式的實驗中，氣候平均態如何調節森林砍伐對氣候系統所造成的降水量反應。我們

發現，相對於年代際尺度的長期氣候平均，在海洋大陸陸地區域的大氣溼靜能垂直

環境擁有「負凹型」剖面（中對流層溼靜能量值低於氣候平均值，中低對流層之間

溼靜能梯度的不穩定度更高）時，森林砍伐有利於更強的溼靜能局部傳送，傾向於

引發更多的年降水量增加。森林砍伐所引起的降水增加也透過負回饋機制降低了

海洋大陸陸地區域的年際降水變異度。相對於長期氣候平均，在更乾、更少雨的氣

候狀態下，森林砍伐反而讓降水變多。透過本研究提出的機制，可以幫助推估在考

慮不同氣候平均態的條件下，地表變遷所引起的地球系統反應。 

 

 

 

 

 

 

關鍵字：海洋大陸、森林砍伐、降水年際變異度、氣候平均態、溼靜能、CESM 
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ABSTRACT 

Deforestation leads to significant changes in precipitation in the Maritime Continent. 

However, the dependence of deforestation response to the climate mean-states remains 

unclear. This study investigated how the climate mean-states modulate deforestation-

induced precipitation anomalies by performing both Atmospheric Model Intercomparison 

Project–type and fully coupled climate model simulations. We discovered that the 

atmospheric environment over the Maritime Continent land regions, having moist static 

energy with a negative-concave-type vertical profile (lower mid-tropospheric MSE 

magnitudes related to the climate average, and higher instability in view of MSE gradient 

between mid- and lower-troposphere) in the mean-state, is favorable to more vigorous 

local energy transportation and tends to lead to higher precipitation after deforestation 

relative to the long-term (decadal time-scale) climatological mean. Deforestation-induced 

precipitation anomalies also reveal negative feedback in which deforestation can 

modulate interannual variability by increasing precipitation in a drier mean-state. The 

mechanism proposed in this study can help diagnose the responses in the Earth system 

caused by land-use change in consideration of different mean-states. 

 

Keywords: Maritime Continent, deforestation, interannual variability of precipitation, 

climate mean-state, moist static energy, CESM 



doi:10.6342/NTU202300128

 iv 

CONTENTS 

 

誌謝 ................................................................................................................................... i 

中文摘要 .......................................................................................................................... ii 

ABSTRACT .................................................................................................................... iii 

CONTENTS .................................................................................................................... iv 

LIST OF FIGURES ......................................................................................................... vi 

LIST OF TABLES ............................................................................................................. x 

Chapter 1 Introduction ................................................................................................ 1 

Chapter 2 Data and Methodology ............................................................................... 5 

2.1 Model Experiments .................................................................................. 5 

2.2 Analysis of Moist Static Energy (MSE) ................................................. 8 

2.3 Grouping of Events ................................................................................ 10 

2.4 Tests of Significance ............................................................................... 11 

Chapter 3 Results ...................................................................................................... 12 

3.1 Patterns of Climatological Precipitation in the Maritime Continent 12 

3.2 Characteristic of MSE Mean-states ..................................................... 12 

3.3 Role of MSE Budget............................................................................... 13 



doi:10.6342/NTU202300128

 v 

3.4 Local Transport of MSE ........................................................................ 16 

Chapter 4 Discussion ................................................................................................ 18 

4.1 The Seasonality of Precipitation Responses ........................................ 18 

4.2 Role of Ocean Feedback ........................................................................ 18 

4.3 Model Test for Long-term Ocean Feedback ........................................ 20 

4.4 Role of Vertical Wind Velocities ............................................................ 22 

4.5 The Contributors to the Interannual Variabilities of MSE Profiles .. 23 

4.6 Features of Simulation using Global Climate Model .......................... 25 

Chapter 5 Conclusion ............................................................................................... 26 

FIGURES ........................................................................................................................ 28 

TABLES .......................................................................................................................... 40 

REFERENCES ................................................................................................................ 42 

 

 



doi:10.6342/NTU202300128

 vi 

LIST OF FIGURES 

Figure 1. Seasonal cycle of precipitation in (a) CTL and (b) ANO run (Wm-2) in 

prescribed-SST simulation. Horizontal axis is month and starts from July to 

June next year. Shaded area represents confident interval with 95% confident 

level (the number of samples=280 for each confident interval). 

Figure 2. Scatter plots for precipitation in (a) CTL and (b) ANO run (Wm-2) with 

regression line in prescribed-SST simulation. The left and right columns show 

the data in DJF (wet season), JA (dry season), and annual mean (all season). 

The number of samples=280 for each scatter plot. 

Figure 3. Classification of CTL MSE (J kg-1) profiles by quartile of annual-mean ANO 

precipitation in prescribed-SST simulation. The values in legend are 

magnitude of group-mean ANO precipitation, confident interval of group-

mean, and the sample size. Shaded area represents confident interval for every 

groups with 95% confident level (the number of samples=70 for red group 

and 69 for blue group). The dot and triangle signs in the left indicate the 

vertical levels where blue group significantly larger than red group (one-tailed 

t-test) with 90% and 95% confident level, respectively. 

Figure 4. Annual-mean vertical MSE advection (J kg-1 s-1) in (a) CTL and (b) ANO in 

prescribed-SST simulation. The three figures below illustrate the MSE 
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profiles of three different contributors to ANO (thermodynamic effect, 

dynamic effect, and non-linear effect). Two lines in each subplot are 

classification result by quartile of annual-mean ANO precipitation. Shaded 

area represents confident interval with 95% confident level. The number of 

samples in the two groups is as the caption of Figure 3. 

Figure 5. Annual-mean vertical advection of the two components of MSE (J kg-1 s-1), (a) 

DSE (𝐶𝑝𝑇 + 𝑔𝑧) and (b) moisture term (𝐿𝑣𝑞𝑣) in prescribed-SST simulation. 

Two lines in each subplot are classification result by quartile of annual-mean 

ANO precipitation. Shaded area represents confident interval with 95% 

confident level. The number of samples in the two groups is as the caption of 

Figure 3. 

Figure 6. Annual-mean horizontal MSE advection (J kg-1 s-1) in (a) CTL and (b) ANO in 

prescribed-SST simulation. The three figures below illustrate the MSE 

profiles of three different contributors to ANO (thermodynamic effect, 

dynamic effect, and non-linear effect). Two lines in each subplot are 

classification result by quartile of annual-mean ANO precipitation. Shaded 

area represents confident interval with 95% confident level. The number of 

samples in the two groups is as the caption of Figure 3. 

Figure 7. Annual-mean horizontal advection of the two components of MSE (J kg-1 s-1), 
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(a) DSE ( 𝐶𝑝𝑇 + 𝑔𝑧 ) and (b) moisture term ( 𝐿𝑣𝑞𝑣 ) in prescribed-SST 

simulation. Two lines in each subplot are classification result by quartile of 

annual-mean ANO precipitation. Shaded area represents confident interval 

with 95% confident level. The number of samples in the two groups is as the 

caption of Figure 3. 

Figure 8. Annual-mean convergence of horizontal wind field (s-1) profiles for (a) CTL 

(unit: 10-5s-1) and (b) ANO (unit: 10-6s-1) in prescribed-SST simulation. Two 

lines in each subplot are classification result by quartile of annual-mean ANO 

precipitation. Shaded area represents confident interval with 95% confident 

level. The number of samples in the two groups is as the caption of Figure 3. 

Figure 9. Annual-mean vertical wind velocity (Pa s-1) profiles for (a) CTL and (b) ANO 

in prescribed-SST simulation. Two lines in each subplot are classification 

result by quartile of annual-mean ANO precipitation. Shaded area represents 

confident interval with 95% confident level. The number of samples in the 

two groups is as the caption of Figure 3. 

Figure 10. Illustrations for local MSE transportation in two scenarios with different MSE-

concavity and different ANO precipitation. Three vertical profiles shown in 

left side are CTL MSE profiles relative to climatological mean, ANO vertical 

velocity, and ANO horizontal MSE advection. The schematic diagram in right 
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side depicts local MSE transports. Brown and blue area indicate land region 

and offshore region, respectively. Blue arrows and green arrows represent 

horizontal MSE advection and vertical MSE advection. Positive horizontal 

MSE advection means the advection towards land region. 

Figure 11. Classification of CTL MSE profiles by quartile of annual-mean ANO 

precipitation in fully-coupled simulation. The values in legend are magnitude 

of group-mean ANO precipitation, confident interval of group-mean, and the 

sample size. Shaded area represents confident interval with 95% confident 

level (the number of samples=10 for the two groups respectively). The dot 

and triangle signs in the left indicate the vertical levels where blue group 

significantly larger than red group (one-tailed t-test) with 90% and 95% 

confident level, respectively. 

Figure 12. Vertical profiles of empirical orthogonal functions (EOF) and time series of 

principal components (PC) for analysis of annual-mean CTL MSE profiles 

ℎ𝑚Δ. The unit of EOF is J kg-1. 
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Chapter 1 Introduction 

Deforestation can influence regional climate states, including precipitation, surface 

energy, and the atmospheric circulation field [Nobre et al., 1991; Dickinson and Kennedy, 

1992; Dirmeyer and Shukla, 1994; Polcher and Laval, 1994; Pielke et al., 2007; Chen et 

al., 2019; Chen and Dirmeyer, 2020; Lawrence et al., 2022]. Deforestation can 

redistribute the proportion of surface heat flux by decreasing the magnitude of latent heat 

flux, which causes more energy to be transmitted to the atmosphere in the form of sensible 

heat flux [Chen et al., 2019]. Higher sensible heat flux can result in higher lower-

troposphere temperature, resulting in anomalous upward wind velocity [Chen et al., 2019]. 

In addition, low cloud cover decreases due to less latent heat flux and near-surface water 

vapor [Chen et al., 2019]; however, anomalous moist flux convergence from offshore 

regions induced by increasing the surface temperature can bring the moisture to 

compensate for the reducing moisture near the surface after deforestation [Henderson‐

sellers et al., 1993; McGuffie et al., 1995; Chen et al., 2019]. However, precipitation 

responses are dependent on changes in surface temperature and regional circulation 

patterns [de Oliveira et al., 2018]. Removing forests within the Maritime Continent could 

lead to higher mean precipitation in the long term (decadal time-scale) [Lawrence and 

Vandecar, 2015; Chen et al., 2019]. It’s worth noting that low-level lateral moisture flux 

convergence would be crucial for bringing anomalous moisture to land regions in the 
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Maritime Continent after deforestation due to the fragmented land masses and 

surrounding oceans. On the other hand, this mechanism is weaker in the Amazon and 

Africa, where the effect of reduced evapotranspiration is more robust [Nogherotto et al., 

2013; Lejeune et al., 2015]. 

In addition, the climate state in the Maritime Continent can be significantly affected 

by the El Niño–Southern Oscillation (ENSO), the main climate mode in the tropical 

Pacific region [Mcbride et al., 2003; Chang et al., 2004]. The magnitude of the Walker 

circulation in the El Niño phase would be weakened, leading to anomalous subsidence in 

the Maritime Continent and heralding an environment with high solar radiation, low 

atmospheric instability, and low cloud cover. In this kind of atmospheric environment, 

the deforestation responses can be strengthened, such as increases in long-term mean 

precipitation and surface temperature [Tölle et al., 2017; Lee and Lo, 2021]. In a 

simulation with high temporal resolution, deforestation would lead to higher maximum 

daily precipitation in El Niño cases [Tölle et al., 2017]. In addition, the idealized 

simulation for Maritime Continent deforestation under an El Niño condition, 

deforestation increased precipitation was amplified compared to the response under a 

neutral condition [Lee and Lo, 2021]. This discrepancy can be attributed to the different 

energy balances under these two states (El Niño vs La Niña) of large-scale circulation.  

Such mean-state-dependent responses have been shown previously. For example, 
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global warming can lead to a stronger hydrological cycle and cause the wet season to 

become wetter in most rainy regions [Chou and Lan, 2012; Chou et al., 2013]. 

Furthermore, the changes in convective precipitation induced by global warming were 

dominated by the dynamic field structure in current mean-states [Liu et al., 2018]. In 

another study of global climate model, it was pointed out that more shallow convections 

and intense low-level upward motion can cause stronger moist static energy (MSE) 

convergence, thereby establishing an unstable environment under warming conditions 

[Chen et al., 2016]. These differences in the mean-states of convection environment and 

dynamic field can initiate different MSE transport patterns and gross moist stability 

[Neelin and Held, 1987]. In other words, the atmospheric environment can affect the 

responses of exogenous forcings, such as the land-use change effects on Indian climate 

under different sea surface temperature (SST) forcings [Halder et al., 2016] and the 

dependency of background wind speed and aerosol–cloud interaction [Gettelman et al., 

2016] mentioned in some past studies. 

Therefore, we proposed a hypothesis that the effect of deforestation is determined not 

only by changes in land type but also by the climate mean-states. Even with the fixed 

effects of land-surface changes, different background conditions may cause differences 

in deforestation responses. We used the specific SST condition to construct a large-scale 

atmospheric environment in the global climate model to simulate the change in 
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precipitation patterns after deforestation in the Maritime Continent. The dependency of 

atmospheric mean-states on the deforestation responses would be discussed. 
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Chapter 2 Data and Methodology 

2.1 Model Experiments 

We investigated the response to deforestation by using two groups of global climate 

model simulations: the CTL group, with the default configuration in land type, and the 

deforestation run (DEF) group, representing land surface conditions after deforestation. 

The differences between CTL and DEF (DEF minus CTL) were considered ANO and to 

reflect the net effect of deforestation. In the following sections, �̅� and 𝑋′ represent the 

value of variables in CTL and ANO, respectively. We used the Community Earth System 

Model (CESM) to perform simulations with a horizontal spatial resolution of 0.9° × 1.25°, 

30 vertical layers, and monthly data frequency. The domain we used in the analysis 

included all grids between 90°E and 140°E as well as 10°S and 10°N, and only land grids 

were selected. In the analysis, we considered only the spatial average over all land grids 

(with the land fraction larger than 0.5) and ignored any spatial variability. To obtain a 

robust mechanism of deforestation responses, two simulations with different model 

configurations were conducted (a full comparison is presented in Table 1). 

In the prescribed-SST simulation, HadOIBI historical sea surface temperature (SST), 

combining HadiSST [Rayner et al., 2003] and NOAA OI [Reynolds et al., 2007], were 

used to represent historical climate conditions driven by the ocean in both CTL and DEF. 

We use CESM1 to conduct the experiment and Community Atmosphere Model version 5 
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(CAM5, Neale et al., 2012) was coupled with Community Land Model version 4 (CLM4, 

Oleson et al., 2010; Lawrence et al., 2011) to represent the responses of deforestation 

considering the atmosphere-land interaction only. For DEF, all land types of broadleaf 

deciduous tropical trees and broadleaf evergreen tropical trees were replaced by grass. 

In both CTL and DEF runs, 8 ensemble members were conducted with the same sea 

surface temperature (SST) and land type setting but slightly perturbed initial air 

temperature. Each ensemble member was spanned up from 1945 to 1969, and the data 

between July 1970 to June 2005 are used to be analyzed. Every year is started in July to 

match the evolution of ENSO so that the influence of ENSO on interannual variability 

can be clarified in subsequent. In the analysis of interannual variability, all 35 years in 8 

ensemble simulations are treated as independent 280 samples. 

We also conducted the simulation with a dynamic ocean to assess the differences 

between CTL and DEF. However, the same “year number” in CTL and DEF are not 

comparable in a long-term simulated fully-coupled run because they don’t have the same 

boundary condition to generate the same “mean-state”. To deal with it, we set a 1-year 

simulation for CTL and DEF experiments, and it’s expected that the climate mean-state 

during the year would be similar in both CTL and DEF due to the similar SST conditions. 

However, DEF configuration in the fully-coupled simulation is different from the 

prescribed-SST simulation because the effects of converting to C4 plants were too weak 
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to build up a deforest-like environment as prescribed-SST run. Therefore, the land type 

of tropical trees was replaced by bare soil, which contributes a very strong forcing to the 

water fluxes and energy fluxes to simulate the scenario of deforestation. 

We selected several simulation starting points in the pre-industrial run carried out with 

CESM2. The 1-year deforestation experiment would be conducted starting from these 

starting points. The candidate events must spread in the different phases of climate 

oscillations to include most of the different climate states generated by climate natural 

variabilities. In this study, we selected 40 events from the pi-Control run based on Oceanic 

Niño Index (ONI), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal 

Oscillation (AMO). The phases of ENSO control the SST variation in the tropical Pacific 

Ocean, and the phases of PDO and AMO dominate the SST fluctuation in a multi-decadal 

timescale. These three climate oscillations are the first three principal components derived 

from the empirical orthogonal functions (EOF) of long-term global sea surface 

temperature (Messie and Chavez, 2011). We tried to capture the effects of these three 

modes that partially control the atmospheric mean-state interannually in the Maritime 

Continent. In addition, the indices must meet 3 conditions: (a) the standardized indices 

must be larger than 0.5 or less than -0.5 to ensure the impact of climate oscillation is 

strong enough to change the atmospheric mean-state, (b) the magnitude of indices of PDO 

and AMO must have the same sign with their 10-year running average to exclude some 
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sudden SST anomalies, (c) the years do not satisfy above two conditions but have stronger 

ONI values. We selected 26 events by the first two conditions and then selected 7 

strongest El Niño and La Niña years with most extreme ONI, respectively, to obtain the 

other 14 events by the third condition. In the following analysis, we focused on the 

responses after deforestation in these 40 events, in which we can explore the role of 

different climate mean-states on the effect of land-use change forcings. 

In both the prescribed-SST and the fully-coupled configurations, the ensemble 

simulations were conducted to eliminate the influence of internal variabilities. For the 

prescribed-SST simulation, the small perturbation in the atmospheric temperature, which 

is called “micro-perturbation”, was given to account for the uncertainties within the 

climate model. On the other hand, the cases in the fully-coupled simulation selected from 

different climatological oscillation phases were also a type of ensemble, which is called 

“macro-perturbation”. Both of these two methods of perturbing were intended to create 

different climate initial conditions. 

2.2 Analysis of Moist Static Energy (MSE) 

Moist static energy (MSE, or ℎ𝑚 , J kg-1) is usually used to represent atmosphere 

energy including internal energy, gravitational energy, and latent heat of water: 

ℎ𝑚 = 𝐶𝑝𝑇 + 𝑔𝑧 + 𝐿𝑣𝑞𝑣       (1) 

𝐶𝑝 is isobaric specific heat capacity (J kg-1 K-1), 𝑔 is Gravitational acceleration (m 
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s-2), and 𝐿𝑣 is the latent heat of vaporization (J kg-1). 𝑇 is the temperature (K), 𝑧 is the 

geopotential height (m), and qv is the specific humidity. The magnitude of MSE can be 

decomposed into the dry static energy (DSE, 𝐶𝑝𝑇 + 𝑔𝑧) and the moisture term (𝐿𝑣𝑞𝑣). 

The vertical gradient of MSE stands for the thermodynamic instability of the atmosphere, 

so MSE vertical profile was calculated to indicate the overall environment related to 

convection motion and precipitation. In the following sections, MSE vertical profiles in 

CTL (ℎ𝑚
̅̅ ̅̅ + ℎ𝑚

̅̅ ̅̅
Δ

) will be shown as an anomaly (ℎ𝑚
̅̅ ̅̅

Δ
) to climatological mean (ℎ𝑚

̅̅ ̅̅ ), so 

does in ANO (ℎ𝑚
′ + ℎ𝑚

′
Δ

). The sign �̅� denotes the values in CTL and 𝑋′ denotes the 

values in ANO. 

To analyze the MSE change between CTL and DEF, we decompose the change in MSE 

in every single layer into different terms in the following context (Zheng et al., 2020): 

𝑑ℎ𝑚

𝑑𝑡
= −�⃗� ⋅ ∇ℎ𝑚 − 𝜔

𝜕ℎ𝑚

𝜕𝑝
+ 𝐹𝑛𝑒𝑡 + 𝜀     (2) 

Each term represents different components in the MSE budget: local change in MSE, 

horizontal advection, vertical advection, net heat source, and residual. �⃗�  is the horizontal 

wind field, 𝜔 is the vertical wind velocity, and residual term (𝜀, including sub-gridded 

transport which cannot be resolved in the model, error from time mean or model 

numerical calculation). 𝐹𝑛𝑒𝑡 is comprised of all heat sources including radiative heating 

rate (𝑄𝑅), latent heat flux (𝐿𝐻), and sensible heat flux (𝑆𝐻).  

We clarify the primary role of the atmospheric energy transfer from the MSE budget 
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analysis by exploring the vertical profile changes of the first two terms (horizontal MSE 

advection and vertical MSE advection) of the right-hand side in equation 3. 

In ANO, change in MSE advection term can be decomposed into dynamic term and 

thermodynamic term: 

(−�⃗� ⋅ ∇ℎ𝑚)
′
= −�⃗� ′ ⋅ ∇ℎ𝑚

̅̅ ̅̅ − �⃗� ̅ ⋅ ∇ℎ𝑚
′ − �⃗� ′ ⋅ ∇ℎ𝑚

′     (3) 

(−𝜔
𝜕ℎ𝑚

𝜕𝑝
)
′

= −𝜔′ 𝜕ℎ𝑚̅̅ ̅̅̅

𝜕𝑝
− �̅�

𝜕ℎ𝑚
′

𝜕𝑝
− 𝜔′ 𝜕ℎ𝑚

′

𝜕𝑝
     (4) 

In the end, we would depict a pattern of local transport of MSE advection, which 

consists of vertical MSE advection and horizontal MSE advection between the land 

region and adjacent offshore region. We will compare the transport among different 

classified groups and find out its correlation with the increases in ANO precipitation. 

2.3 Grouping of Events 

We tried to figure out the relation between MSE profile characteristics in CTL and 

precipitation in ANO (that is, the deforestation-induced response in precipitation). To 

capture the certain feature of all mean-states and their response in ANO precipitation, we 

selected the events into two groups based on the quartiles by corresponding ANO 

precipitation, that is, the events that have “greater magnitude” and “smaller magnitude” 

of precipitation increases., respectively. The events with ANO precipitation below the 1st 

quartile and above 3th quartile were selected into these two groups. The remaining events 

(within the 1st to the 3th quartile of ANO precipitation) would be considered neutral 
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conditions and would not be analyzed. In the following analysis, we discuss the 

discrepancies in climate conditions in these two groups and conclude the mechanism 

associated with the different deforestation-induced responses. 

2.4 Tests of Significance 

All the confident intervals in the vertical profiles and seasonal cycle diagrams were 

calculated by �̅� ± 𝑡0.025 𝑠 √𝑛⁄  to give an estimation of the mean values. 𝑡0.025 is the 

critical value of the t distribution with a 95% confidence level (two-tailed test). In Figure 

3 and Figure 11, the significance tests for the two groups is two-tailed Student’s t-test that 

determines whether the magnitudes in each level of vertical profile in one group are larger 

than another group. 
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Chapter 3 Results 

3.1 Patterns of Climatological Precipitation in the Maritime 

Continent 

In the Maritime Continent, the wet season spans from September to April, with the 

other months typically considered the dry season (Figure 1a). After deforestation, 

precipitation is significantly higher in all seasons (Figure 1b), but with no significant 

between-season differences. There is only a slightly greater precipitation increase in the 

dry season. On the other hand, annual mean precipitation in the anomalies (ANO) is 

significantly negatively correlated with that in the control run (CTL; Figure 2a). In other 

words, the responses to deforestation tend to provide a negative-feedback effect on 

interannual scales, demonstrating a “dry-get-wetter” pattern in the variability in the 

precipitation. In comparison, the responses to the global warming forcing have “wet-gets-

wetter” patterns on spatial or seasonal scales as shown in previous studies [Chen et al., 

2016]. Based on the negative correlation, we can conclude that the climate mean-state 

with lower precipitation in CTL tends to have higher precipitation after deforestation at 

the interannual scale. 

3.2 Characteristic of MSE Mean-states 

Figure 3 illustrates the grouping profiles of CTL MSE ℎ𝑚
̅̅ ̅̅

Δ
 and the values listed in 

the legend are sorted by magnitudes of group-mean ANO precipitation. The two groups 
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with the greatest and smallest ANO precipitation have negative and positive MSE 

anomalies in the middle troposphere, respectively. In contrast, the interannual variability 

of MSE is less divergent in the lower and upper troposphere. For the significance of the 

difference between the two groups, the confidence intervals of the two lines can be 

considered as the discrepancy between every case within the group. According to the test 

of the significance of the difference, it can be known that the difference in the magnitude 

of MSE in the middle troposphere is the most significant. 

Based on the result of grouping, we can conclude that anomalous magnitudes of MSE 

in the middle troposphere and ANO precipitation have some relation. In the events that 

ANO precipitation is greater or less than the climatological mean, corresponding MSE 

profiles have “negative-concave” and “positive-concave” characteristics. The shape of 

the MSE profile affects the vertical thermodynamic structure and atmospheric instability. 

In negative-concave cases, MSE has a negative gradient (unstable environment) in the 

lower troposphere, and such a long-term environment might be more conducive to the 

occurrence of convective motion. 

3.3 Role of MSE Budget 

In CTL, there is a positive upwards vertical advection of MSE from the surface to 700 

hPa and a negative upwards vertical advection above 700 hPa (Figure 4a). The direction 

of vertical MSE transport is dominated by the gradient of the typical profile of MSE in 
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tropical climatological mean. Based on the results of quartile grouping, the group which 

has greater ANO precipitation has weaker MSE advection in CTL. After deforestation, 

magnitudes of upward vertical MSE advection are enhanced (Figure 4b). The groups with 

greater ANO precipitation show significantly stronger increases in vertical transport. 

Moreover, change in the vertical velocity (so-called dynamic term) mainly accounts for 

enhanced MSE vertical transport (Figure 4c). On the other hand, change in the MSE 

profile (thermodynamic term) has an opposite effect from the surface to 700 hPa (Figure 

4d), but the values are one order of magnitude less than the dynamic term. In the group 

with the smallest ANO precipitation, the thermodynamic term contributes to upward MSE 

advection between 850 hPa to 700 hPa, which can be attributed to the positive gradient 

of MSE in ANO above 850 hPa. Besides, non-linear terms have similar magnitudes, 

leading to upward transport from nearly 700 hPa to 600 hPa (Figure 4e). From the 

perspective of the two parts of MSE, the vertical advection is dominated by the moisture 

term, while the vertical advection of DSE has an opposite contribution (Figure 5). The 

negative contribution of DSE on the enhanced vertical advection of MSE has a consistent 

magnitude above 800 hPa, and the positive effect of the moisture term can be roughly 

offset in the upper troposphere. 

The horizontal advection of MSE in CTL is negative from the surface to the middle 

troposphere (Figure 6a). This is caused by the gradient between the land region and the 
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adjacent sea region (Figure 8b, the signs of horizontal wind divergence and horizontal 

advection are opposite, implying that the gradient of MSE is pointing inward). In other 

words, horizontal convergence has a negative contribution to the low-level MSE. 

Deforestation leads to an anomalous MSE convergence near the surface, and a divergence 

above 900 hPa (Figure 6b). Deforestation leads to weaker latent heat fluxes at the surface, 

and MSE near the surface will decrease, intensifying the gradient between land and 

offshore region. Depending on the groups with different ANO precipitation, the 

anomalous divergence between 900 hPa to 600 hPa is weaker in the groups, which have 

greater ANO precipitation. In three components of ANO horizontal advection, change in 

MSE gradient (thermodynamic term) shows a similar pattern to total ANO horizontal 

advection (Figure 6d), while there is anomalous negative advection between 900 hPa to 

700 hPa for the group with smaller ANO precipitation. Change in wind field (dynamic 

term) tends to strengthen positive MSE advection for all groups (Figure 6c). It is worth 

noting that the magnitude of non-linear terms (the correlation between wind field anomaly 

and MSE gradient anomaly) cannot be ignored, which brings in a consistent MSE 

divergence across almost the whole troposphere (Figure 6e). For horizontal MSE 

advection, the differences between the four groups are not clear as vertical MSE advection, 

except for the anomalous convergence in 850 hPa to 700 hPa. 

The decomposition of the horizontal advection of MSE (Figure 7) implies that the 
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contribution of the moisture term is dominant. The conflicting effect of DSE partially 

offsets the enhanced horizontal advection of MSE below 900 hPa, but the magnitude 

decays with the height rapidly. 

3.4 Local Transport of MSE 

Based on the above analysis for MSE advection, we found that there’s stronger 

negative horizontal advection between 850 hPa to 500 hPa for the group with smaller 

ANO precipitation (Figure 6b), and the upward vertical advection is much weaker than 

other groups (Figure 4a). On the other hand, the group with greater ANO precipitation 

shows weaker negative horizontal advection below 500 hPa, but there’s negative 

horizontal advection in the upper troposphere (It is worth noting that the pattern of this 

“vertical discrepancy of the horizontal advection” can be found in the horizontal 

advection of the moisture term shown as Figure 7 shown). For vertical wind velocities, 

deforestation brings consistent upward anomalies for all groups (Figure 9b) compared to 

the original upward environment in CTL (Figure 9a), which implies a stronger local 

transport for MSE transport caused by deforestation for all characteristics of mean-states. 

From the wind field viewpoint, there’s an anomalous convergence layer and an 

anomalous divergence layer near the surface after deforestation (Figure 8b) compared to 

the local wind field in CTL (Figure 8a). For the group with greater ANO precipitation, 

the convergence layer is thicker, and the divergence layer can extend to nearly 500 hPa. 
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Moreover, there’s a stronger anomalous divergence in the upper troposphere. The above 

feature can be summarized as a different pattern of MSE transport (Figure 10). In the 

scenario that the magnitude of negative horizontal MSE advection between 850 hPa to 

500 hPa is weaker, there’s a deeper MSE transport extended to the upper troposphere, 

with stronger upward vertical MSE advection in the low troposphere and horizontal 

divergence in the upper troposphere. In addition, deeper MSE transport has a high 

correlation with greater precipitation increases after deforestation, and vice versa. 
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Chapter 4 Discussion 

4.1 The Seasonality of Precipitation Responses 

We found different levels of correlations between ANO precipitation and CTL 

precipitation (Figure 2). A stronger correlation between CTL precipitation and ANO 

precipitation is observed if only the wet season is included to calculate the interannual 

variation (Figure 2b). On the contrary, the CTL precipitation in the dry season (July–

August) has a higher interannual variability and lower R2 values (Figure 2c) than does the 

precipitation in the wet season (December–January–February). 

4.2 Role of Ocean Feedback 

Deforestation leads to the alternation of the hydrological cycle and energy cycle, so 

the environments in both the land region and the adjacent offshore region are important 

to the responses in the Maritime Continent. Early studies showed that change in equatorial 

easterlies in Western Pacific would affect the strength of upwelling current, as well as 

SST and ocean evaporation fluxes. Delire (2001) compared deforestation experiments 

with fully-coupled (dynamic ocean) and fixed SST configurations and found that the 

weaker equatorial easterlies in the fully-coupled run. Therefore, precipitation over the 

Maritime Continent is greater in the fixed SST run compared to the fully-coupled run. 

However, Schneck and Mosbrugger (2011) obtained opposite results, which have stronger 

equatorial easterlies and less precipitation in the fully-coupled run. Although different 
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studies have found contrary conclusions due to the model-dependent issues, it is robust 

that stronger cooling effect caused by upwelling current can contribute to stabilization of 

the convective environment [Schneck and Mosbrugger, 2011]. 

To evaluate the effects of ocean feedback in a global climate model, the relations 

between the CTL MSE profile and ANO precipitation simulated by fully-coupled 

simulations were discussed. Figure 11 illustrates the grouping profiles of CTL MSE ℎ𝑚
̅̅ ̅̅

Δ
 

in fully-coupled simulations, grouped by ANO quartiles (as same as Figure 3). The groups 

with the greatest and smallest ANO precipitation have a negative-concave and positive-

concave profile, respectively, which is the same as the result in the prescribed-SST 

simulation. According to the above discussion, we believe that the connection of CTL 

MSE and ANO precipitation is still robust under the condition of considering the dynamic 

ocean model. It's worth noting that, compared with those in the prescribed-SST 

simulations, the amplitudes of MSE profile concavity in the fully coupled simulations are 

larger. This may be attributable to the more extreme events in the fully coupled runs 

(selected from the 2000-year pi-Control simulation), and the stronger oscillation of MSE 

concavity can be created. In contrast, the oscillation of MSE profiles in the prescribed-

SST simulation, which was induced by the 35-year historical SST forcings, has a smaller, 

more constrained annual variability in profile concavities. 
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4.3 Model Test for Long-term Ocean Feedback 

The fully-coupled and prescribed-SST climate model were both used in our analysis; 

however, the detailed differences to deforestation experiment between these two 

configurations still lack comparison. There’re several discrepancies in these two 

experiments: (a) version of model (CESM1 & CESM2), (b) initial condition (present day 

& pi-Control), (c) simulated time length (long-term simulation & transient simulation), 

(d) deforested forcing (converting to C4 plant & converting to bare soil). Each difference 

of above factors is necessary to be disentangled to clarify the model performance on 

deforest-experiment. For example, how the forcings of deforestation were setup is critical 

in model experiment. It had been understood in our analysis that converting to C4 plant 

in 1-year fully-coupled run is not robust enough to build up typical responses as in 

prescribed-SST run. In the other word, it’s worthy to notice that the effect of “C4 type 

deforestation” costs time to reach its steady-state while we try to conduct a transient 

deforest experiment analysis in fully-coupled climate model. 

Differences in model versions and simulation time length might still cause 

uncertainties in the results. If we want to obtain the quantitative impact on deforestation 

responses from the dynamic ocean, more simulations with different experiment 

configurations must be operated to determine the effect of each factor (such as versions 

of parameterization, simulation time length, the initial conditions of land type and 
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aerosols) on the climate responses. Hence, a fully coupled climate model with an active 

ocean model test was conducted to compare the effect of including ocean feedbacks under 

the same initial states (pi-Control condition) and the same deforestation configuration 

(convert to bare soil), so the effect of ocean feedbacks could be isolated. The model test 

was conducted by Community Earth System Model version 2. The prescribed-SST run 

(PreOcean), slab-ocean run (SbOcean), and the fully-coupled run (CpOcean) were 

simulated for 30 years (last 25 years for analysis), 30 years (last 25 years for analysis), 

and 100 years (last 50 years for analysis), respectively. The long-term responses to 

deforestation were analyzed. In these three different configurations, the pre-industrial 

initial states were used. To ensure the consistency in the land surface condition, the initial 

surface dataset in fully-coupled simulations was replaced as same as the prescribed-SST. 

The results are listed in Table 2. 

In the CpOcean run (coupled ocean), the climatological precipitation is greater, but the 

response of deforestation is smaller. This can be linked to the negative feedback 

relationship for interannual precipitation variability seen in Figure 2 in this study. 

Moreover, comparing to the PreOcean (prescribed-SST ocean) run, the climatological 

land surface temperature, climatological land Bowen ratio, and climatological offshore 

SST (not shown) are all significantly greater in the CpOcean run. Though, the systematic 

biases of SST and air-sea flux caused by coupling ocean model were found to have high 
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dependencies in model parameterizations and spatial resolution in previous 

coupled/uncoupled comparison studies [Xue et al., 2020; Fujii et al., 2021]. On the other 

hand, a weaker increase in precipitation might be related to the weaker changes in 

increasing sensible heat flux (SH) and decreasing latent heat flux (LH) in the fully-

coupled run. This is similar to the phenomenon mentioned in the previous study that the 

magnitudes of SH&LH responses have a dependency on the climatological Bowen ratio 

[Chen and Lo, under review]. 

On the other hand, the SbOcean (slab ocean) run shows a different climatological state. 

Even the stronger climatological SH, LH, and hotter surface temperature can be found, 

the climatological precipitation is less than the PreOcean run. In the responses caused by 

deforestation, the increase of precipitation in the SbOcean run is weaker than the 

CpOcean run, but the increase in SH and the decrease in LH is more severe than the 

PreOcean run. All these facts mean that although the mechanism of the slab ocean can 

make the surface energy flux more responsive, there are other effects that inhibit the 

increase in precipitation except the SH&LH response. Therefore, the "precipitation 

increase" and the "SH&LH change" of the three runs (prescribed, slab, and fully-coupled 

ocean) did not completely show the same relationship. 

4.4 Role of Vertical Wind Velocities 

In CTL, MSE profiles can be used to determine the atmosphere instability of the mean-
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states. For the group with a negative-concave MSE profile, there’s an anomalous positive 

MSE gradient in the low troposphere, and this leads to greater convective instability. 

However, convective precipitation is not only determined by thermodynamic instability; 

vertical velocity is also related to the strength of convective motion. Deforestation-

induced anomalous upward MSE vertical advection is strengthened below 700 hPa in the 

group with greater ANO precipitation (Figure 4b), which can be attributed to changes in 

the gradient of the MSE profile and upward vertical velocity anomaly. Furthermore, the 

dynamic term of MSE vertical advection (−𝜔′ ∂ℎ𝑚
̅̅ ̅̅ ∂𝑝⁄ ) is more positive for the group 

with greater ANO precipitation between the surface to 700 hPa (Figure 4c). For negative-

concave groups, the magnitude of advection depends on the positive effect from stronger 

anomalous vertical velocity and more positive ∂ℎ𝑚
̅̅ ̅̅ ∂𝑝⁄  ; the response of ultimate 

advection cannot be simply attributed to one of the factors. Based on the above examples, 

the co-exist of stronger upward ANO vertical velocity and greater positive gradient of 

CTL MSE is more important than the separate effects of the two factors, leading to 

enhanced ANO MSE vertical advection among the four groups. The characteristic of the 

MSE profile has a high correlation to the pattern of vertical velocity, but the causality 

between the two factors deserves future work. 

4.5 The Contributors to the Interannual Variabilities of 
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MSE Profiles 

Empirical orthogonal function (EOF) analysis is used to decompose data and extract 

the main component that explains the largest variability by a series of orthogonal 

functions. For prescribed-SST simulations, the first two principal components (PC1, PC2) 

of CTL MSE profiles ℎ𝑚Δ
̅̅ ̅̅ ̅̅   over the whole troposphere represent long-term warming 

trend and ENSO mode, respectively (Figure 12). EOF 1 shows uniform positive values 

in the MSE profile. With the increasing trend of PC1, mode 1 of EOF stands for a 

consistent warming trend for MSE over the whole troposphere. However, warming rates 

in different parts of the troposphere are uneven. The uneven warming might cause long-

term changes in CTL MSE profile pattern, but the relationship between this change in 

environment and the response of deforestation have not been clarified here. On the other 

hand, EOF 2 shows a negative value in the middle atmosphere. The interannual variability 

with negative-concave and positive-concave patterns can be generated through the 

oscillation of PC2. Mode 2 of EOF is mainly dominated by large-scale oscillation, 

especially ENSO. The correlation coefficients between PC2 and annual-mean Ocean 

Niño Index (ONI) are 0.70 (the figures were not listed here). The several main positive 

(negative) peaks in the PC time series can correspond to historical El Niño (La Niña) 

events. From the results of EOF2, ENSO has a large impact on the characteristic of the 

MSE profile in a multi-year oscillation period. The relationship between concave-type 
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and ENSO also provides an explanation that the negative-concave group has a stronger 

magnitude of MSE anomaly. In historical observation, the extreme El Niño has a higher 

frequency than the extreme La Niña [Trenberth, 1997]. More extreme El Niño events 

might contribute to the negative-concave group and lead to an asymmetric MSE profile 

with “stronger” negative-concave and “weaker” positive-concave. 

4.6 Features of Simulation using Global Climate Model 

Although global climate models’ spatial resolution is coarse, such experiment tools 

can take into account the responses of the global climate system, hydrological cycle, and 

biogeochemical processes more broadly. In contrast, mesoscale numerical weather 

simulation can resolve regional characteristics better, including land-surface state and 

topography effects, but the interaction between the region and the large-scale environment 

may not be considered. In addition, in this study, the SST pattern in global climate models 

is the key to controlling the global atmospheric climate state. In future studies, more 

alternatives could be utilized to simulate the climate response, such as the atmospheric 

nudging approach in the global model simulations [Chen et al., 2021]. 
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Chapter 5 Conclusion 

This study clarifies the relationship between the responses of deforestation in the MC 

land regions and its local climate mean-state, primarily determined by the natural 

variabilities in the climate system. Analyses from prescribed-SST and fully-coupled 

simulations indicate that the drier mean-state environment can have a stronger increase 

in precipitation after deforestation, also altering the interannual variability of land 

precipitation in the Maritime Continent. The MSE mean-state with a negative-concave 

profile type is prone to induce greater increases in precipitation after deforestation. Based 

on the analysis of the MSE budget, we speculated that the stronger MSE vertical 

advection in the lower troposphere and stronger negative MSE horizontal advection 

between 900 hPa to 600 hPa, which jointly build up a deeper MSE local transport that 

induces more energy into the terrestrial region in the Maritime Continent. The gradient of 

the negative-concave MSE profile in the lower troposphere provides a more unstable 

environment, favorable to stronger upward motion and enhanced local transport, leading 

to greater annual-mean precipitation after deforestation. 

This study implies that although the same magnitude of the forcings is given in the 

experiment, the local responses can be distinguished due to different background 

atmospheric environments caused by natural climate variabilities. Changes in 

precipitation between the control and deforestation run also reveal a negative feedback, 
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in which deforestation can modulate the interannual variability of annual-mean 

precipitation by bringing greater precipitation in a drier mean-state condition. The 

mechanism proposed in this study can help understand and diagnose the responses in the 

Earth system caused by external anthropogenic forcings (such as the greenhouse gases) 

in consideration of different mean-states (namely the internal variability in the Earth 

system). 
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FIGURES 

 

Figure 1. Seasonal cycle of precipitation in (a) CTL and (b) ANO run (Wm-2) in 

prescribed-SST simulation. Horizontal axis is month and starts from July to June next 

year. Shaded area represents confident interval with 95% confident level (the number of 

samples=280 for each confident interval). 
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Figure 2. Scatter plots for precipitation in (a) CTL and (b) ANO run (Wm-2) with 

regression line in prescribed-SST simulation. The left and right columns show the data in 

DJF (wet season), JA (dry season), and annual mean (all season). The number of 

samples=280 for each scatter plot. 
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Figure 3. Classification of CTL MSE (J kg-1) profiles by quartile of annual-mean ANO 

precipitation in prescribed-SST simulation. The values in legend are magnitude of group-

mean ANO precipitation, confident interval of group-mean, and the sample size. Shaded 

area represents confident interval for every groups with 95% confident level (the number 

of samples=70 for red group and 69 for blue group). The dot and triangle signs in the left 

indicate the vertical levels where blue group significantly larger than red group (one-

tailed t-test) with 90% and 95% confident level, respectively. 
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Figure 4. Annual-mean vertical MSE advection (J kg-1 s-1) in (a) CTL and (b) ANO in 

prescribed-SST simulation. The three figures below illustrate the MSE profiles of three 

different contributors to ANO (thermodynamic effect, dynamic effect, and non-linear 

effect). Two lines in each subplot are classification result by quartile of annual-mean ANO 

precipitation. Shaded area represents confident interval with 95% confident level. The 

number of samples in the two groups is as the caption of Figure 3. 
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Figure 5. Annual-mean vertical advection of the two components of MSE (J kg-1 s-1), (a) 

DSE (𝐶𝑝𝑇 + 𝑔𝑧) and (b) moisture term (𝐿𝑣𝑞𝑣) in prescribed-SST simulation. Two lines 

in each subplot are classification result by quartile of annual-mean ANO precipitation. 

Shaded area represents confident interval with 95% confident level. The number of 

samples in the two groups is as the caption of Figure 3. 
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Figure 6. Annual-mean horizontal MSE advection (J kg-1 s-1) in (a) CTL and (b) ANO in 

prescribed-SST simulation. The three figures below illustrate the MSE profiles of three 

different contributors to ANO (thermodynamic effect, dynamic effect, and non-linear 

effect). Two lines in each subplot are classification result by quartile of annual-mean ANO 

precipitation. Shaded area represents confident interval with 95% confident level. The 

number of samples in the two groups is as the caption of Figure 3. 
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Figure 7. Annual-mean horizontal advection of the two components of MSE (J kg-1 s-1), 

(a) DSE (𝐶𝑝𝑇 + 𝑔𝑧) and (b) moisture term (𝐿𝑣𝑞𝑣) in prescribed-SST simulation. Two 

lines in each subplot are classification result by quartile of annual-mean ANO 

precipitation. Shaded area represents confident interval with 95% confident level. The 

number of samples in the two groups is as the caption of Figure 3. 
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Figure 8. Annual-mean convergence of horizontal wind field (s-1) profiles for (a) CTL 

(unit: 10-5s-1) and (b) ANO (unit: 10-6s-1) in prescribed-SST simulation. Two lines in each 

subplot are classification result by quartile of annual-mean ANO precipitation. Shaded 

area represents confident interval with 95% confident level. The number of samples in 

the two groups is as the caption of Figure 3. 
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Figure 9. Annual-mean vertical wind velocity (Pa s-1) profiles for (a) CTL and (b) ANO 

in prescribed-SST simulation. Two lines in each subplot are classification result by 

quartile of annual-mean ANO precipitation. Shaded area represents confident interval 

with 95% confident level. The number of samples in the two groups is as the caption of 

Figure 3. 
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Figure 10. Illustrations for local MSE transportation in two scenarios with different MSE-

concavity and different ANO precipitation. Three vertical profiles shown in left side are 

CTL MSE profiles relative to climatological mean, ANO vertical velocity, and ANO 

horizontal MSE advection. The schematic diagram in right side depicts local MSE 

transports. Brown and blue area indicate land region and offshore region, respectively. 

Blue arrows and green arrows represent horizontal MSE advection and vertical MSE 

advection. Positive horizontal MSE advection means the advection towards land region. 
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Figure 11. Classification of CTL MSE profiles by quartile of annual-mean ANO 

precipitation in fully-coupled simulation. The values in legend are magnitude of group-

mean ANO precipitation, confident interval of group-mean, and the sample size. Shaded 

area represents confident interval with 95% confident level (the number of samples=10 

for the two groups respectively). The dot and triangle signs in the left indicate the vertical 

levels where blue group significantly larger than red group (one-tailed t-test) with 90% 

and 95% confident level, respectively. 
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Figure 12. Vertical profiles of empirical orthogonal functions (EOF) and time series of 

principal components (PC) for analysis of annual-mean CTL MSE profiles ℎ𝑚Δ
̅̅ ̅̅ ̅̅ . The unit 

of EOF is J kg-1. 
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TABLES 

Table 1. Comparison of two global climate model experiments in this study. 

 Prescribed-SST Simulation Fully-coupled Simulation 

Model Version CESM1 CESM2 

Model component 

set and initial states 
Present-day Pre-industrial control 

Atmosphere Simulated, CAM5 Simulated, CAM6 

Land 

Deforest-

Experiment 

Simulated, CLM4 

Tropical tree to C4 

Simulated, CLM5 BGC  

Tropical tree to bare soil 

Ocean Prescribed, HadOIBI SST Simulated, POP2 

Spatial resolution 

Vertical resolution 

Data frequency 

0.9°x1.25° 

30 layers 

Monthly 

Ensemble 
 8 members 

(Micro-perturbation) 

26 members 

(Macro-perturbation) 

Spin-up years 1945 to 1969, 25 years 
Jan. to May. of the year n, 5 

months 

Analysis years 
Jul. 1970 to Jun. 2005, 35 

years for each member 

Jun. of the year n to May. of 

the year n+1, 1 years for each 

member 

Total smaples 
Ensemble × years 

8×35=280 26×1=26 
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Table 2. The climate responses of deforestation in the ocean feedback model test. The 

magnitudes listed below are the spatial-average in the land region in the Maritime 

Continent. Asterisks represent the values that pass the significance test. 

Experiment Variables CTL ANO 

PreOcean 

Precipitation (Wm-2) 248.75 19.60* 

Sensible heat flux (Wm-2) 27.90 15.84* 

Latent heat flux (Wm-2) 106.38 -30.11* 

Surface temperature (K) 298.01 3.26* 

Bowen ratio 0.31 0.37* 

CpOcean 

minus 

PreOcean 

Precipitation (Wm-2) 9.06* -7.18 

Sensible heat flux (Wm-2) 4.06* -2.40 

Latent heat flux (Wm-2) -1.95* 3.15 

Surface temperature (K) 1.37* -0.20 

Bowen ratio 0.05* 0.00 

SbOcean 

minus 

PreOcean 

Precipitation (Wm-2) -5.88 -9.28 

Sensible heat flux (Wm-2) 1.62* 2.69 

Latent heat flux (Wm-2) 2.61* -3.31 

Surface temperature (K) 0.96* 0.12 

Bowen ratio 0.02* 0.11 

  



doi:10.6342/NTU202300128

 42 

REFERENCES 

Chang, C. P., Wang, Z., Ju, J. H., & Li, T. (2004). On the relationship between western 

maritime continent monsoon rainfall and ENSO during northern winter. Journal of 

Climate, 17(3), 665-672. 

Chen, C. A., Yu, J. Y., & Chou, C. (2016). Impacts of Vertical Structure of Convection in 

Global Warming: The Role of Shallow Convection. Journal of Climate, 29(12), 

4665-4684. 

Chen, C. C., Lo, M. H., Im, E. S., Yu, J. Y., Liang, Y. C., Chen, W. T., Tang, I. P., Lan, C. 

W., Wu, R. J., & Chien, R. Y. (2019). Thermodynamic and Dynamic Responses to 

Deforestation in the Maritime Continent: A Modeling Study. Journal of Climate, 

32(12), 3505-3527. 

Chen, H. C., Lo, M. H. Contrasting Responses of Surface Heat Fluxes to Tropical 

Deforestation. Manuscript submitted for publication. 

Chen, L., & Dirmeyer, P. A. (2020). Reconciling the disagreement between observed and 

simulated temperature responses to deforestation. Nature Communications, 11(1). 

Chen, L., Ford, T. W., & Yadav, P. (2021). The role of vegetation in flash drought 

occurrence: A sensitivity study using community earth system model, version 2. 

Journal of Hydrometeorology, 22(4), 845-857. 

Chou, C., Chiang, J. C. H., Lan, C. W., Chung, C. H., Liao, Y. C., & Lee, C. J. (2013). 



doi:10.6342/NTU202300128

 43 

Increase in the range between wet and dry season precipitation. Nature Geoscience, 

6(4), 263-267. 

Chou, C., & Lan, C. W. (2012). Changes in the Annual Range of Precipitation under 

Global Warming. Journal of Climate, 25(1), 222-235. 

de Oliveira, J. V., Ferreira, D. B. D., Sahoo, P. K., Sodre, G. R. C., de Souza, E. B., & 

Queiroz, J. C. B. (2018). Differences in precipitation and evapotranspiration between 

forested and deforested areas in the Amazon rainforest using remote sensing data. 

Environmental Earth Sciences, 77(6). 

Delire, C., Behling, P., Coe, M. T., Foley, J. A., Jacob, R., Kutzbach, J., Liu, Z., Vavrus, 

S. (2001). Simulated response of the atmosphere ‐ ocean system to deforestation in 

the Indonesian Archipelago. Geophysical Research Letters, 28, 2081 - 2084 

Dickinson, R. E., & Kennedy, P. (1992). Impacts on Regional Climate of Amazon 

Deforestation. Geophysical Research Letters, 19(19), 1947-1950. 

Dirmeyer, P. A., & Shukla, J. (1994). Albedo as a Modulator of Climate Response to 

Tropical Deforestation. Journal of Geophysical Research-Atmospheres, 99(D10), 

20863-20877. 

Fujii, Y., Ishibashi, T., Yasuda, T., Takaya, Y., Kobayashi, C., & Ishikawa, I. (2021). 

Improvements in tropical precipitation and sea surface air temperature fields in a 

coupled atmosphere-ocean data assimilation system. Quarterly Journal of the Royal 



doi:10.6342/NTU202300128

 44 

Meteorological Society, 147(735), 1317-1343. 

Gettelman, A., Lin, L., Medeiros, B., & Olson, J. (2016). Climate Feedback Variance and 

the Interaction of Aerosol Forcing and Feedbacks. Journal of Climate, 29(18), 6659-

6675. 

Halder, S., Saha, S. K., Dirmeyer, P. A., Chase, T. N., & Goswami, B. N. (2016). 

Investigating the impact of land-use land-cover change on Indian summer monsoon 

daily rainfall and temperature during 1951-2005 using a regional climate model. 

Hydrology and Earth System Sciences, 20(5), 1765-1784. 

Henderson-Sellers, A., Dickinson, R. E., Durbidge, T. B., Kennedy, P. J., Mcguffie, K., & 

Pitman, A. J. (1993). Tropical Deforestation - Modeling Local-Scale to Regional-

Scale Climate Change. Journal of Geophysical Research-Atmospheres, 98(D4), 

7289-7315. 

Lawrence, D., Coe, M., Walker, W., Verchot, L., & Vandecar, K. (2022). The Unseen 

Effects of Deforestation: Biophysical Effects on Climate. Frontiers in Forests and 

Global Change, 5. 

Lawrence, D., & Vandecar, K. (2015). Effects of tropical deforestation on climate and 

agriculture. Nature Climate Change, 5(1), 27-36. 

Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson, S. C., 

Lawrence, P. J., Zeng, X.-B., Yang, Z.-L., Levis, S., Sakaguchi, K., Bonan, G. B., & 



doi:10.6342/NTU202300128

 45 

Slater, A. G. (2011). Parameterization improvements and functional and structural 

advances in Version 4 of the Community Land Model. 

Lee, T. H., & Lo, M. H. (2021). The role of El Nino in modulating the effects of 

deforestation in the Maritime Continent. Environmental Research Letters, 16(5). 

Lejeune, Q., Davin, E. L., Guillod, B. P., & Seneviratne, S. I. (2015). Influence of 

Amazonian deforestation on the future evolution of regional surface fluxes, 

circulation, surface temperature and precipitation. Climate Dynamics, 44(9-10), 

2769-2786. 

Liu, H. W., Yu, J. Y., & Chen, C. A. (2018). Changes of tropical precipitation and 

convective structure under global warming projected by CMIP5 model simulations. 

Terrestrial Atmospheric and Oceanic Sciences, 29(4), 429-440. 

McBride, J. L., Haylock, M. R., & Nichols, N. (2003). Relationships between the 

maritime continent heat source and the El Nino-Southern Oscillation phenomenon. 

Journal of Climate, 16(17), 2905-2914. 

Mcguffie, K., Henderson-Sellers, A., Zhang, H., Durbridge, T. B., & Pitman, A. J. (1995). 

Global Climate Sensitivity to Tropical Deforestation. Global and Planetary Change, 

10(1-4), 97-128.  

Messie, M., & Chavez, F. (2011). Global Modes of Sea Surface Temperature Variability 

in Relation to Regional Climate Indices. Journal of Climate, 24(16), 4314-4331. 



doi:10.6342/NTU202300128

 46 

Neale, R. B., Gettelman, A., Park, A., Conley, A. J., Kinnison, D., Marsh, D., Smith, A. 

K., Vitt, F., Morrison, H., Cameron-smith, P., Collins, W. D., Iacono, M. J., Easter, 

R. C., Liu, X.-H., Taylor, M. A., Chen, C.-C., Lauritzen, P. H., Williamson, D. L., 

Garcia, R., . . . Rasch, P. J. (2012). Description of the NCAR community atmosphere 

model (CAM 5.0). 

Neelin, J. D., & Held, I. M. (1987). Modeling Tropical Convergence Based on the Moist 

Static Energy Budget. Monthly Weather Review, 115(1), 3-12. 

Nobre, C. A., Sellers, P. J., & Shukla, J. (1991). Amazonian Deforestation and Regional 

Climate Change. Journal of Climate, 4(10), 957-988. 

Nogherotto, R., Coppola, E., Giorgi, F., & Mariotti, L. (2013). Impact of Congo Basin 

deforestation on the African monsoon. Atmospheric Science Letters, 14(1), 45-51.  

Oleson, W. B., Lawrence, M., Bonan, B., Flanner, G., Kluzek, E., Lawrence, J., Levis, S., 

Swenson, C.L., Thornton, E., Dai, A., Decker, M., Dickinson, R.E., Feddema, J.J., 

Heald, L., Hoffman, F.M., Lamarque, J., Mahowald, N.M., Niu, G., Qian, T., 

Randerson, J.T., Running, S.W., Sakaguchi, K., Slater, A.G., Stöckli, R., Wang, A., 

Yang, Z., Zeng, X., & Zeng, X. (2010). Technical description of version 4.0 of the 

Community Land Model (CLM). 

Pielke, R. A., Adegoke, J., Beltran-Przekurat, A., Hiemstra, C. A., Lin, J., Nair, U. S., 

Niyogi, D., & Nobis, T. E. (2007). An overview of regional land-use and land-cover 



doi:10.6342/NTU202300128

 47 

impacts on rainfall. Tellus Series B-Chemical and Physical Meteorology, 59(3), 587-

601. 

Polcher, J., & Laval, K. (1994). The Impact of African and Amazonian Deforestation on 

Tropical Climate. Journal of Hydrology, 155(3-4), 389-405. 

Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. 

P., Kent, E. C., & Kaplan, A. (2003). Global analyses of sea surface temperature, sea 

ice, and night marine air temperature since the late nineteenth century. Journal of 

Geophysical Research-Atmospheres, 108(D14). 

Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., & Schlax, M. G. 

(2007). Daily high-resolution-blended analyses for sea surface temperature. Journal 

of Climate, 20(22), 5473-5496. 

Schneck, R., and Mosbrugger, V. (2011). Simulated climate effects of Southeast Asian 

deforestation: Regional processes and teleconnection mechanisms, Journal of 

Geophysical Research, 116, D11116 

Tölle, M. H., Engler, S., & Panitz, H. J. (2017). Impact of Abrupt Land Cover Changes 

by Tropical Deforestation on Southeast Asian Climate and Agriculture. Journal of 

Climate, 30(7), 2587-2600. 

Trenberth, K. E. (1997). The definition of El Nino. Bulletin of the American 

Meteorological Society, 78(12), 2771-2777. 



doi:10.6342/NTU202300128

 48 

Xue, P., Malanotte-Rizzoli, P., Wei, J., & Eltahir, E. (2020). Coupled Ocean-Atmosphere 

Modeling Over the Maritime Continent: A Review. Journal of Geophysical Research: 

Oceans, 125(6). 

Zheng, T., Feng, T., Xu, K., & Cheng, X. H. (2020). Precipitation and the Associated 

Moist Static Energy Budget off Western Australia in Conjunction with Ningaloo 

Nino. Frontiers in Earth Science, 8. 


